

JT-60SA Toroidal Field Coils Test Cryostat Development

A collaboration between : F4E Broader Fusion Development Dept., Germany SCK/CEN, Belgium CEA/DSM/IRFU CEA-Saclay, France Ateliers de la Meuse (ALM), Belgium VBTech S.A., Luxembourg

Introduction

- JT-60SA : JAEA tokamak upgraded to superconducting
 - ✓ 18 Superconducting toroidal field magnets provided by EU (9 by Italy, 9 by France)
 - ✓ Need to test all these magnets at operating conditions before delivery
- Test Cryostat developed by VBTech, CEA and ALM :
 - ✓ vacuum vessel, vacuum system, coils test support, and thermal liquid nitrogen shields by VBTech and ALM (B)
 - cryogenic system, electrical and safety system, test performance by CEA Saclay (F)

Overview of TF coil on its test adaptor **Design made by VBTech**

• Mechanical design :

- ✓ main vacuum chamber (11 [m] long, 7.2 [m] wide, 6.5 [m] high)
 - with horizontal flange for full opening
 - o with interface for TF coil test adaptor and thermal shields
- ✓ auxiliary vacuum chamber (Valve box, 2.2 [m] diameter, 2.5 [m] high)
 - o hosting the valves, circulators, heat exchangers, electrical feeders
 - o with interface to helium refrigerator and current leads
- ✓ full FEM model (SAMCEF) for deformation and stress evaluation due to atmospheric pressure and weight
- Thermal design
 - \checkmark radiation shields covering the vacuum vessel
 - ✓ electro-polished embossed stainless steel panels
 - \checkmark isostatic mount with thermal decoupling
 - \checkmark thermal decoupling to TF coil and LN₂ intercept for coil adaptor at vessel interface

Requirements

- Operating conditions for the magnets :
 - ✓ vacuum
 - ✓ thermal load minimised by liquid nitrogen shielding
 - nominal current 25.7 [kA] \checkmark
 - ✓ nominal temperature 5 [K], with temperature margin tested up to around 7.5 [K] before quench
- Mechanical configuration
 - \checkmark TF coils about 8.4 [m] long, 4.5 [m] wide and 0.7 [m] high, 18 [t] weight
 - ✓ TF coils installed horizontally, hanging on a test adaptor
 - \checkmark isostatic mount with thermal decoupling
 - \checkmark with electrical and helium connections on one side

FEM stress results and zoom on DN630 flange

Manufacturing

• Large parts : ✓ 60 [t] assembled cryostat ✓ approximate volume 400 [m²]

Overview JT-60SA, in red the toroidal field coils

- Vacuum design
 - \checkmark large volume 400 [m³]
 - \checkmark primary vacuum to be reached in several hours
 - ✓ secondary vacuum by oil diffusion pump
 - ✓ computations with CSL software
 - \checkmark 2000 [m³ h⁻¹] rotary and 6000 [l s⁻¹] diffusion pumps

Open-close check for cover, pumping system in front

Machining of the main flange (see scale with operator on right)

Test performed by VBTech

• Vacuum test :

- \checkmark for main vessel and value box
- ✓ integrity under atmospheric pressure load
- \checkmark evacuation time
- ✓ ultimate pressure
- ✓ Helium leak tests, global leak rate test (< 10^{-2} [mb l s⁻¹])

 \checkmark Helium pressure test of thermal shields up to 5 [barg] •Ambient tests :

✓ opening - closing of cover (25 [t] part)

✓ installation of TF coil test frame on its isostatic mount.

- •All main parts machined at ALM :
 - ✓ main vacuum vessel
 - ✓ main vacuum vessel cover
 - \checkmark valve box
 - \checkmark valve box cover
- Assembly of vessel, thermal shields, TF coils test adaptor and vacuum system done at ALM by VBTech

Fit check of the TF coil adaptor

✓ magnetic material verification

Conclusion

- Toroidal Field coils test cryostat
- developed by VBTech and ALM
- Mechanical, thermal and vacuum aspects
- requirements fulfilled successfully
- Test cryostat delivered to CEA Saclay mid September 2012
- TF coil test facility set-up done by CEA Saclay at their premises
- TF coil tests successfully done by CEA Saclay

Inside the thermal shields when cover is on

View through side flange with adaptor